

Modbus on SenseAir(R) S8 rev_1_00 Page 1 (23)

 www.senseair.se

Modbus on SenseAir ® S8

Engineering specification

Table of contents:

1. Revision information ...2
2. General...3
3. Byte transmission...4
4. Modbus registers on sensor. ..5
5. Serial line frame and addressing... 10
6. Bus timing... 11
7. Function codes descriptions (PUBLIC).. 12
8. References .. 18
9. Appendix A: Application examples .. 19
10. Appendix B. Compatibility with CO2 Engine and eSense Modbus definitions. 23

 PRELIMINARY

Modbus on SenseAir(R) S8 rev_1_00 Page 2 (23)

1. Revision information

Table 1: Document revision history

Rev. Date: Author Status:
P01
1.00

Febr. 10, 2010 PZ Specification revision is based on released rev2.01 of
Modbus on CO2 Engine and eSense specification by
PZ, JE, LN. New version addresses only SenseAir ® S8
family of sensors. Description of compatible features
shall be done in Appendix B in next revision of this
document.
Change references to the latest version of Modbus
standard

 PRELIMINARY

Modbus on SenseAir(R) S8 rev_1_00 Page 3 (23)

2. General

Modbus is a simple, open protocol for both PLC and sensors. Details on Modbus can be
found on www.modbus.org.

Present specification is based on specification of Modbus implementation on aSense
and eSense and CO2Engine® families of sensors and aims to support backwards
compatibility with them. The differences between the Modbus specification [1] and the
default implementation in the sensor are listed in this document.

General overview of protocol and implementation in the sensor

Master – slave:
Only master can initiate transaction. The sensor is a slave and will never initiate
communication. The host system initiates transactions to read CO2 value from the
corresponding register. The host system shall also check status of the sensor
periodically (say every 2 sec) in order to determine if it is running without faults
detected.

Packet identification:
Any message (packet) starts with a silent interval of 3.5 characters. Another silent
interval of 3.5 characters marks message end. Silence interval between characters in
the message needs to be kept less than 1.5 characters.
Both intervals are from the end of Stop-bit of previous byte to the beginning of the
Start-bit of the next byte.

Packet length:
According to the Modbus specification [1], the packet length shall be maximum 255
bytes including address and CRC. We cannot support so large packets. Maximum
length of packet (serial line PDU including address byte and 2 bytes CRC) supported by
the sensor is 39 bytes (differs from CO2 Engine models with their 28 bytes). Packets
of larger size are rejected without any answer from sensor even if the packet
was addressed to the sensor.

Modbus data model:
There are 4 primary data tables (addressable registers), which may overlay:

 Discrete Input (read only bit).
 Coil (read / write bit).
 Input register (read only 16 bit word, interpretation is up to application).
 Holding register (read / write 16 bit word).

Note: The sensor does not support bitwise access of registers.

Exception responses:
Slave will send answer to the master only in the case of valid message structure.
Nevertheless, it can send exception response because of detection of:

 Invalid function code.
 Invalid data address (requested register doesn’t exist in given device).
 Invalid data.
 Error in execution of requested function.
Modbus diagnostic counters: T.B.D.

 PRELIMINARY

Modbus on SenseAir(R) S8 rev_1_00 Page 4 (23)

3. Byte transmission.

RTU transmission mode is the only mode supported by the sensor.

3.1. Byte format:

The format for each byte in RTU mode differs between the sensor default configuration
and the description on page 12 of MODBUS over serial line specification [2].

Table 2: Byte format differences

 MODBUS over serial line
specification [2]

Sensor default
configuration

Coding system 8-bit binary 8-bit binary

Bits per byte: 1 start bit 1 start bit

Data bits 8 data bits,
least significant bit first

8 data bits,
least significant bit first

 1 bit for even
parity

No parity bit NO parity bit

 1 stop bit 2 stop bits 1 stop bit for receiving
2 stop bits at transmission

The reason for the absence of parity and stop bit control is requirement of compatibility
with test and production systems.
Implementation of 1 stop bit on receive and 2 stop bits at transmit provides
compatibility with masters using both 1 and 2 stop bits.

3.2. Baud rate (data signaling rate)

9600 bps and 19200 bps are required baud rates and required default baud rate
according to MODBUS over serial line specification [2], page 20, is 19200 bps

SenseAir ® S8 supports 9600 baud rate only.

3.3. Physical layer:

The sensor provides CMOS logical levels RxD and TxD lines for serial transmission. It’s
up to the system integrator to use them for direct communication with master
processor or for connection to RS-232 or RS-485 drivers. In the latter case R/T control
line may be added on request.

Communication lines are fed directly to micro controller. Please refer particular model
technical description for electrical specifications.

 PRELIMINARY

Modbus on SenseAir(R) S8 rev_1_00 Page 5 (23)

4. Modbus registers on sensor.

The Modbus registers are mapped in memory, both RAM and EEPROM of the sensor.
Mapping is interpreted by sensor firmware at command reception.

Presently, the following restrictive decisions are made:
1. Read only and read / write registers are not allowed to overlay.
2. Bit addressable items (i.e. Coils and Discrete inputs) will not be implemented.
3. Only write single register functional codes are implemented. Multiple write
functional codes are not planned for implementation.
4. The total number of registers should be limited. Present decision is to limit
number of input registers to 32 and number of holding registers to 32.
Note: the limited buffer space of the sensor puts a limit on how many registers that
can be read in one command, currently 8 registers.
5. Larger amount of data should be transferred as file. It is not implemented at
the current stage of development.

Maps of registers (All registers are 16 bit word) are summarized in Table 1 and Table
2. Associated number is Modbus register number: Register address is calculated as
(register number -1)

Table 3 : Input Registers

IR# # Name

IR1 0 MeterStatus DI
16

DI
15

DI
14

DI
13

DI
12

DI
11

DI
10

DI
9

DI
8

DI
7

DI
6

DI
5

DI
4

DI
3

DI
2

DI
1

DI 1 - Fatal error
DI 2 - Offset regulation error
DI 3 - Algorithm Error
DI 4 - Output Error
DI 5 - Self diagnostics error
DI 6 - Out Of Range
DI 7 - Memory error
DI 8 - Reserved
DI 9 - Reserved
DI 10 - Reserved
DI 11 - Reserved
DI 12 - Reserved
DI 13 - Reserved
DI 14 - Reserved
DI 15 - Reserved
DI 16 - Reserved

IR2 1 AlarmStatus DI
16

DI
15

DI
14

DI
13

DI
12

DI
11

DI
10

DI
9

DI
8

DI
7

DI
6

DI
5

DI
4

DI
3

DI
2

DI
1

DI 17 -
DI 18 -
DI 19 -
DI 20 -
DI 21 -
DI 22 -
DI 23 -

 PRELIMINARY

Modbus on SenseAir(R) S8 rev_1_00 Page 6 (23)

DI 24 -
DI 25 -
DI 26 -
DI 27 -
DI 28 -
DI 29 -
DI 30 -
DI 31 -
DI 32 -

IR3 2 Output
Status

DI
16

DI
15

DI
14

DI
13

DI
12

DI
11

DI
10

DI
9

DI
8

DI
7

DI
6

DI
5

DI
4

DI
3

DI
2

DI
1

DI 33 -
DI 34 -
DI 35 -
DI 36 -
DI 37 -
DI 38 -
DI 39 -
DI 40 -
DI 41 -
DI 42 -
DI 43 -
DI 44 -
DI 45 -
DI 46 -
DI 47 -
DI 48 -

IR4 3 Space CO2 Space CO2

IR5 4 Reserved for Space Temp, returns "illegal data address" exception

IR6 5 Reserved, returns "illegal data address" exception

IR7 6 Reserved, returns "illegal data address" exception

IR8 7 Reserved, returns "illegal data address" exception

IR9 8 Reserved, returns "illegal data address" exception

IR10 9 Reserved, returns "illegal data address" exception

IR11 10 Reserved, returns "illegal data address" exception

IR12 11 Reserved, returns "illegal data address" exception

IR13 12 Reserved, returns "illegal data address" exception

IR14 13 Reserved, returns "illegal data address" exception

IR15 14 Reserved, returns "illegal data address" exception

IR16 15 Reserved, returns "illegal data address" exception

IR17 16 Reserved, returns "illegal data address" exception

IR18 17 Reserved, returns "illegal data address" exception

 PRELIMINARY

Modbus on SenseAir(R) S8 rev_1_00 Page 7 (23)

IR19 18 Reserved, returns "illegal data address" exception

IR20 19 Reserved, returns "illegal data address" exception

IR21 20 Reserved, returns "illegal data address" exception

IR22 21 Output 1 * Output 1 *

IR23 22 Reserved, returns "illegal data address" exception

IR24 23 Reserved, returns "illegal data address" exception

IR25 24 Reserved, returns "illegal data address" exception

IR26 25 Reserved, returns "illegal data address" exception

IR27 26 Reserved, returns "illegal data address" exception

IR28 27 Reserved, returns "illegal data address" exception

IR29 28 Reserved, returns "illegal data address" exception

IR30 29 Reserved, returns "illegal data address" exception

IR31 30 Reserved, returns "illegal data address" exception

IR32 31 Reserved, returns "illegal data address" exception

* 0x3FFF represents 100% output.
 Refer to sensor model’s specification for voltage at 100% output.

Table 4: Holding Registers

HR# # Name

HR1 0
Acknowle
dgement
register

DI
16

DI
15

DI
14

DI
13

DI
12

DI
11

DI
10

DI
9

DI
8

DI
7

DI
6

DI
5

DI
4

DI
3

DI
2

DI
1

CI 1 -
CI 2 -
CI 3 -
CI 4 -
CI 5 -
CI 6 - CO2 background calibration has been performed
CI 7 - CO2 nitrogen calibration has been performed
CI 8 -
CI 9 -
CI 10 -
CI 11 -
CI 12 -
CI 13 -
CI 14 -
CI 15 -
CI 16 -

 PRELIMINARY

Modbus on SenseAir(R) S8 rev_1_00 Page 8 (23)

HR2 1
Special
Command
Register *

Command Parameter

0x7C

0x6 - CO2 background calibration
0x7 - CO2 zero calibration

HR3 2 Reserved, returns "illegal data address" exception

HR4 3 Reserved, returns "illegal data address" exception

HR5 4 Reserved, returns "illegal data address" exception

HR6 5 Reserved, returns "illegal data address" exception

HR7 6 Reserved, returns "illegal data address" exception

HR8 7 Reserved, returns "illegal data address" exception

HR9 8 Reserved, returns "illegal data address" exception

HR10 9 Reserved, returns "illegal data address" exception

HR11 10 Reserved, returns "illegal data address" exception

HR12 11 Reserved, returns "illegal data address" exception

HR13 12 Reserved, returns "illegal data address" exception

HR14 13 Reserved, returns "illegal data address" exception

HR15 14 Reserved, returns "illegal data address" exception

HR16 15 Reserved, returns "illegal data address" exception

HR17 16 Reserved, returns "illegal data address" exception

HR18 17 Reserved, returns "illegal data address" exception

HR19 18 Reserved, returns "illegal data address" exception

HR20 19 Reserved, returns "illegal data address" exception

HR21 20 Reserved, returns "illegal data address" exception

HR22 21 Reserved, returns "illegal data address" exception

HR23 22 Reserved, returns "illegal data address" exception

HR24 23 Reserved, returns "illegal data address" exception

HR25 24 Reserved, returns "illegal data address" exception

HR26 25 Reserved, returns "illegal data address" exception

HR27 26 Reserved, returns "illegal data address" exception

HR28 27 Reserved, returns "illegal data address" exception

HR29 28 Reserved, returns "illegal data address" exception

 PRELIMINARY

Modbus on SenseAir(R) S8 rev_1_00 Page 9 (23)

HR30 29 Reserved, returns "illegal data address" exception

HR31 30 Reserved, returns "illegal data address" exception

HR32 31 Reserved, returns "illegal data address" exception

* Special Command Register is write-only.

 PRELIMINARY

Modbus on SenseAir(R) S8 rev_1_00 Page 10 (23)

5. Serial line frame and addressing.

5.1. Serial line frame

Modbus over serial line specification [2] distinguishes Modbus Protocol PDU and
Modbus serial line PDU in the following way (RTU mode only is under consideration):

Modbus serial line PDU
Address field (1

byte)
Function Code Data CRC (Hi and Low)

 Modbus PDU

5.2. Addressing rules

Addressing rules are summarised in the table:

Address Modbus over serial
line V1.0

SenseAir ® S8 Sensor

0 Broadcast address No broadcast commands currently implemented
From 1
to 247

Slave individual address Slave individual address

From
248 to
253

Reserved Nothing1)

254 Reserved “Any sensor”
255 Reserved Nothing1)
Notes:

1. “Nothing” means that sensor doesn’t recognise Modbus serial line PDUs with this
address as addressed to the sensor. Sensor does not respond.

2. “Any sensor” means that any sensor with any slave individual address will recognise
serial line PDUs with address 254 as addressed to them. They will respond. So that
this address is for production / test purposes only. It must not be used in the installed
network.
This is a violation against the Modbus specification [1].

5.3. Broadcast address

Modbus specification [1] requires execution of all write commands in the broadcast
address mode.

Current status for the sensor:
Only one broadcast command, reset sensor, is planned but not implemented yet.

 PRELIMINARY

Modbus on SenseAir(R) S8 rev_1_00 Page 11 (23)

6. Bus timing.

Parameter Min Typ Max Units
Response time-out 180 msec
Turnaround delay TBD msec

“Response time-out” is defined to prevent master (host system) from staying in
“Waiting for reply” state indefinitely. Refer to page 9 of MODBUS over serial line
specification [2].

For slave device “Response time-out” represents maximum time allowed to take by
“processing of required action”, “formatting normal reply” and “normal reply sent”
alternatively by “formatting error reply” and “error reply sent”, refer to the slave state
diagram on page 10 of the document mentioned above.

“Turnaround delay” is defined in MODBUS over serial line specification [2] as delay
respected by Master after broadcast command in order to allow any slave to process
the current request before sending a new one.

 PRELIMINARY

Modbus on SenseAir(R) S8 rev_1_00 Page 12 (23)

7. Function codes descriptions (PUBLIC).

Description of exception responses.

If the PDU of the received command has wrong format:

No Response PDU, (sensor doesn’t respond)

If Function Code isn’t equal to any implemented function code:

Exception Response PDU,

Function code 1 byte Function Code + 0x80
Exception code = Illegal
Function

1 byte 0x01

If one or more of addressed Registers is not assigned (register is reserved or
Quantity of registers is larger than maximum number of supported registers):

Exception Response PDU,

Function code 1 byte Function Code +
0x80

Exception code = Illegal Data
Address

1 byte 0x02

 PRELIMINARY

Modbus on SenseAir(R) S8 rev_1_00 Page 13 (23)

7.1. 01 (0x01) Read Coils (one bit read / write registers).

Not implemented.

7.2. 02 (0x02) Read Discrete Inputs (one bit read only registers).

Not implemented.

7.3. 03 (0x03) Read Holding Registers (16 bits read / write

registers).

Refer to Modbus specification [1].

Quantity of Registers is limited to 32.

Address of Modbus Holding Registers for 1-command reading is
limited in range 0x0000..0x001F.

Request PDU

Function code 1 byte 0x03
Starting Address Hi 1 byte Address Hi
Starting Address Lo 1 byte Address Lo
Quantity of Registers Hi 1 byte Quantity Hi
Quantity of Registers Lo 1 byte Quantity Lo

Response PDU

Function code 1 byte 0x03
Byte Count 1 byte 2 x N*
Register Value N* x 2

bytes

* N = Quantity of Registers

If Address>0x001F or (Address + Quantity)>0x0020:
Exception Response PDU,

Function code 1 byte 0x83
Exception code = Illegal Data Address 1 byte 0x02

If Quantity=0 or Quantity>8:
Exception Response PDU,

Function code 1 byte 0x83
Exception code = Illegal Data Value 1 byte 0x03

 PRELIMINARY

Modbus on SenseAir(R) S8 rev_1_00 Page 14 (23)

7.4. 04 (0x04) Read Input Registers (16 bits read only registers).

Refer to Modbus specification [1].

Quantity of Registers is limited to 32.

Address of Modbus Input Registers for 1-command reading is limited
in range 0x0000..0x001F.

Request PDU

Function code 1 byte 0x04
Starting Address Hi 1 byte Address Hi
Starting Address Lo 1 byte Address Lo
Quantity of Registers Hi 1 byte Quantity Hi
Quantity of Registers Lo 1 byte Quantity Lo

Response PDU

Function code 1 byte 0x04
Byte Count 1 byte 2 x N*
Register Value N* x 2

bytes

* N = Quantity of Registers

If Address>0x001F or (Address + Quantity)>0x0020:
Exception Response PDU,

Function code 1 byte 0x84
Exception code = Illegal Data Address 1 byte 0x02

If Quantity=0 or Quantity>8:
Exception Response PDU,

Function code 1 byte 0x84
Exception code = Illegal Data Value 1 byte 0x03

7.5. 05 (0x05) Write Single Coil (one bit read / write register).

Not implemented.

 PRELIMINARY

Modbus on SenseAir(R) S8 rev_1_00 Page 15 (23)

7.6. 06 (0x06) Write Single Register (16 bits read / write register).

Refer to Modbus specification [1].

Address of Modbus Holding Registers for 1-command reading/writing
is limited in range 0x0000..0x001F.

Request PDU

Function code 1 byte 0x06
Starting Address Hi 1 byte Address Hi
Starting Address Lo 1 byte Address Lo
Register Value Hi 1 byte Value Hi
Register Value Lo 1 byte Value Lo

Response PDU (is an echo of the Request)

Function code 1 byte 0x06
Starting Address Hi 1 byte Address Hi
Starting Address Lo 1 byte Address Lo
Register Value Hi 1 byte Value Hi
Register Value Lo 1 byte Value Lo

If Address>0x001F:
Exception Response PDU,

Function code 1 byte 0x86
Exception code = Illegal Data Address 1 byte 0x02

7.7. 15 (0x0F) Write Multiple Coils (one bit read / write registers).

Not implemented.

7.8. 16 (0x10) Write Multiple Registers (16 bits read / write

register).
Not implemented.

7.9. 20 (0x14) Read File record.

Not implemented.

7.10. 21 (0x15) Write File record.

Not implemented.

7.11. 22 (0x16) Mask Write Register (16 bits read / write register).

Not implemented.

7.12. 23 (0x17) Read / Write Multiple Registers (16 bits read / write

register).

Not implemented.

 PRELIMINARY

Modbus on SenseAir(R) S8 rev_1_00 Page 16 (23)

43 / 14 (0x2B / 0x0E) Read Device Identification.

Refer to Modbus specification [1].

NOTE: This function is NOT implemented in SenseAir ® S8 yet.

The sensor supports only Read Device ID code 4, individual access.

Objects 0x00..0x02 (basic identification) and 0x80..0x83 (extended identification) are
available (see table)

Object

ID
Object Name /

Description
Type Modbus

status
Category

Implement.

status
0x00 Vendor Name ASCII string* Mandatory Basic Implemented
0x01 ProductCode ASCII string* Mandatory Basic Implemented
0x02 MajorMinorRevision ASCII string* Mandatory Basic Implemented
0x03 VendorUrl ASCII string Optional Regular Not

Implemented
0x04 ProductName ASCII string Optional Regular Not

Implemented
0x05 ModelName ASCII string Optional Regular Not

Implemented
0x06 UserApplicationName ASCII string Optional Regular Not

Implemented
0x07..
0x7F

Reserved

0x80 Memory map version 1 byte unsigned Optional Extended Implemented
0x81 Firmware revision,

consists of:
Firmware type,
Revision Main,
Revision Sub

3 bytes unsigned

Optional Extended Implemented

0x82 Sensor serial number
(sensor ID)

4 bytes unsigned Optional Extended Implemented

0x83 Sensor type 3 bytes unsigned Optional Extended Implemented

*The ASCII strings are different for different models. As an example:
Vendor Name = “SenseAir AB” (length 11 bytes)
Product Code = “SenseAir(R) S8” (length 14 bytes)
MajorMinorRevision = “V1.00” (length 5 bytes)

 PRELIMINARY

Modbus on SenseAir(R) S8 rev_1_00 Page 17 (23)

 Example: Read objects of category “Basic”.

Request PDU, Object ID 0x00 to 0x02

Function code 1 byte 0x2B
MEI Type 1 byte 0x0E
Read Device ID code 1 byte 0x04 (individual access only)
Object ID 1 byte 0x00..0x02

Response PDU, Object ID 0x00 to 0x02

Function code 1 byte 0x2B
MEI Type 1 byte 0x0E
Read Device ID code 1 byte 0x04, same as in request
Conformity level 1 byte 0x81, basic identification for individual or

stream access
More Follows 1 byte 0x00
Next Object ID 1 byte 0x00
Number of objects 1 byte 0x01
Object ID 1 byte 0x00..0x02
Object length 1 byte 0x0B or 0x0E or 0x05 (see definition of ASCII

strings)
Object value n byte Object Data

 Example: Read objects of category “Extended”.

Request PDU, Object ID 0x80 to 0x83

Function code 1 byte 0x2B
MEI Type 1 byte 0x0E
Read Device ID code 1 byte 0x04 (individual access only)
Object ID 1 byte 0x80..0x83

Response PDU, Object ID 0x80 to 0x83

Function code 1 byte 0x2B
MEI Type 1 byte 0x0E
Read Device ID code 1 byte 0x04, same as in request
Conformity level 1 byte 0x83 : extended identification for individual or

stream access
More Follows 1 byte 0x00
Next Object ID 1 byte 0x00
Number of objects 1 byte 0x01
Object ID 1 byte 0x80..0x83
Object length 1 byte 0x01 or 0x03 or 0x04
Object value 1 or 3 or

4 byte
Object Data

 PRELIMINARY

Modbus on SenseAir(R) S8 rev_1_00 Page 18 (23)

If wrong MEI Type:
Exception Response PDU,

Function code 1 byte 0xAB
Exception code = Illegal Function Code 1 byte 0x01

If Object ID is not in range 0x00..0x03 or 0x80..0x83:
Exception Response PDU,

Function code 1 byte 0xAB
Exception code = Illegal Data Address 1 byte 0x02

If wrong Device ID:
Exception Response PDU,

Function code 1 byte 0xAB
Exception code = Illegal Data Value 1 byte 0x03

Note: The exception responses for function code 43 is implemented according to the
RFC “RFC Non extended Exception code format of 43 Encapsulated Transport .doc”
which is in status “Recommended for approval” at time of writing. This is in contrast
with the Modbus specification [1] where the exception responses for function code 43
also have a MEI type field.

8. References

 [1] MODBUS Application Protocol Specification V1.1b
 [2] MODBUS over serial line specification and implementation guide V1.02

 PRELIMINARY

Modbus on SenseAir(R) S8 rev_1_00 Page 19 (23)

9. Appendix A: Application examples

Prerequisites for the application examples:

1. A single slave (sensor) is assumed (address “any sensor” is used).
2. Values in <..> are hexadecimal.

CO2 read sequence:

The sensor is addressed as “Any address” (0xFE).
We read CO2 value from IR4 using “Read input registers” (function code 04). Hence,
Starting address will be 0x0003 (register number-1) and Quantity of registers 0x0001.
CRC calculated to 0xC5D5 is sent with low byte first.
We assume in this example that by sensor measured CO2 value is 400ppm*.

Sensor replies with CO2 reading 400ppm (400 ppm = 0x190 hexadecimal).

Master Transmit:
<FE> <04> <00> <03> <00> <01> <D5> <C5>

Slave Reply:
<FE> <04> <02> <01> <90> <AC> <D8>

* Note that some future models in the SenseAir ® S8 family of sensors may have a different
scale factor on the ppm reading. The reading on these models is divided by 10 (i.e. when
ambient CO2 level is 400ppm the sensor will transmit the number 40). In this example the
reply from one of these models would be 40 (= 0x28 hexadecimal).

Sensor status read sequence:

The sensor is addressed as “Any address” (0xFE).
We read status from IR1 using “Read input registers” (function code 04). Hence,
Starting address will be 0x0000 (register number-1) and Quantity of registers 0x0001.
CRC calculated to 0xC525 is sent with low byte first.

Sensor replies with status 0.

Master Transmit:
<FE> <04> <00> <00> <00> <01> <25> <C5>

Slave Reply:
<FE> <04> <02> <00> <00> <AD> <24>

 PRELIMINARY

Modbus on SenseAir(R) S8 rev_1_00 Page 20 (23)

Sensor status and CO2 read sequence:

The sensor is addressed as “Any address” (0xFE).
Here we read both status and CO2 in one command by reading IR 1 to 4 using “Read
input registers” (function code 04). Hence, Starting address will be 0x0000 (register
number-1) and Quantity of registers 0x0004. CRC calculated to 0xC6E5 is sent with
low byte first.
We assume in this example that by sensor measured CO2 value is 400ppm*.

Sensor replies with status=0 and CO2 value 400ppm (0x190 hexadecimal).

Master Transmit:
<FE> <04> <00> <00> <00> <04> <E5> <C6>

Slave Reply:
<FE> <04> <08> <00> <00> <00> <00> <00> <00> <01> <90> <16> <E6>
 | Status | | CO2 |

* Note that some future models in the SenseAir ® S8 family of sensors may have a different
scale factor on the ppm reading. The reading on these models is divided by 10 (i.e. when
ambient CO2 level is 400ppm the sensor will transmit the number 40). In this example the
reply from one of these models would be 40 (= 0x28 hexadecimal).

 PRELIMINARY

Modbus on SenseAir(R) S8 rev_1_00 Page 21 (23)

Background calibration sequence:

The sensor is addressed as “Any address” (0xFE).

1. Clear acknowledgement register by writing 0 to HR1. Starting address is 0x0000 and
Register value 0x0000. CRC calculated as 0xC59D is sent with low byte first.

Master Transmit:
<FE> <06> <00> <00> <00> <00> <9D> <C5>

Slave Reply:
<FE> <06> <00> <00> <00> <00> <9D> <C5>

2. Write command to start background calibration. Parameter for background
calibration is 6 and for nitrogen calibration is 7. We write command 0x7C with
parameter 0x06 to HR2. Starting address is 0x0001 and Register value 0x7C06. CRC
calculated as 0xC76C is sent with low byte first.

Master Transmit:
<FE> <06> <00> <01> <7C> <06> <6C> <C7>

Slave Reply:
<FE> <06> <00> <01> <7C> <06> <6C> <C7>

3. Wait at least 2 seconds for standard sensor with 2 sec lamp cycle.

4. Read acknowledgement register. We use function 3 “Read Holding register” to
read HR1. Starting address is 0x0000 and Quantity of registers is 0x0001. CRC
calculated as 0x0590 is sent with low byte first.

Master Transmit:
<FE> <03> <00> <00> <00> <01> <90> <05>

Slave Reply:
<FE> <03> <02> <00> <20> <AD> <88>

Check that bit 5 (CI6) is 1. It is an acknowledgement of that the sensor has performed
the calibration operation. The sensor may skip calibration; an example of a reason for
this could be unstable signal due to changing CO2 concentration at the moment of the
calibration request.

 PRELIMINARY

Modbus on SenseAir(R) S8 rev_1_00 Page 22 (23)

Read Device ID, Vendor Name:

NOTE: This function is NOT implemented in SenseAir ® S8 yet.

The sensor is addressed as “Any address” (0xFE).
We use the Read Device ID to read Vendor Name (object 0, basic access). This object
is an ASCII string containing “SenseAir AB”.

Function code is 0x2B, MEI Type 0x0E. Read Device ID code must be 0x04 (since the
sensor only supports individual access.) Object ID is 0x00. CRC calculated to 0x3367 is
sent with low byte first.

Sensor replies with a packet containing the 11-byte string.

Master Transmit:
<FE> <2B> <0E> <04> <00> <67> <33>

Slave Reply:
<FE> <2B> <0E> <04> <81> <00> <00> <01> <00> <0B> <53> <65> <6E>
<73> <65> <41> <69> <72> <20> <41> <42> <BE> <18>

In the response we can see:
Address = 0xFE
Function code = 0x2B
MEI Type = 0x0E
Read Device ID code = 0x04
Conformity level = 0x81
More Follows = 0x00
Next Object ID = 0x00
Number of objects = 0x01
Object ID = 0x00
Object Length = 0x0B (11 bytes)
Object Value = 0x53 … 0x42 (11 bytes with ASCII codes for “SenseAir AB”)
CRC = 0x18BE sent with low byte first

 PRELIMINARY

Modbus on SenseAir(R) S8 rev_1_00 Page 23 (23)

10. Appendix B. Compatibility with CO2 Engine

and eSense Modbus definitions.

To be added in the next revision of this document

CO2Meter.com
131 Business Center

Suite A -3
Ormond Beach, FL 32174

USA

877.678.4259 Toll Free
866.422.2356 Fax

